13 research outputs found

    Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space.</p> <p>Results</p> <p>We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (<it>Plasmodium chabaudi</it>), systemic acquired resistance in <it>Arabidopsis thaliana</it>, similarities and differences between inner and outer cotyledon in <it>Brassica napus </it>during seed development, and to <it>Brassica napus </it>whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples.</p> <p>Conclusions</p> <p>Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.</p

    A Platform for Processing Expression of Short Time Series (PESTS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time course microarray profiles examine the expression of genes over a time domain. They are necessary in order to determine the complete set of genes that are dynamically expressed under given conditions, and to determine the interaction between these genes. Because of cost and resource issues, most time series datasets contain less than 9 points and there are few tools available geared towards the analysis of this type of data.</p> <p>Results</p> <p>To this end, we introduce a platform for Processing Expression of Short Time Series (PESTS). It was designed with a focus on usability and interpretability of analyses for the researcher. As such, it implements several standard techniques for comparability as well as visualization functions. However, it is designed specifically for the unique methods we have developed for significance analysis, multiple test correction and clustering of short time series data. The central tenet of these methods is the use of biologically relevant features for analysis. Features summarize short gene expression profiles, inherently incorporate dependence across time, and allow for both full description of the examined curve and missing data points.</p> <p>Conclusions</p> <p>PESTS is fully generalizable to other types of time series analyses. PESTS implements novel methods as well as several standard techniques for comparability and visualization functions. These features and functionality make PESTS a valuable resource for a researcher's toolkit. PESTS is available to download for free to academic and non-profit users at <url>http://www.mailman.columbia.edu/academic-departments/biostatistics/research-service/software-development</url>.</p

    The Role of Annexin A2 in Tumorigenesis and Cancer Progression

    No full text
    Annexin A2 is a calcium-dependent, phospholipid-binding protein found on various cell types. It is up-regulated in various tumor types and plays multiple roles in regulating cellular functions, including angiogenesis, proliferation, apoptosis, cell migration, invasion and adhesion. Annexin A2 binds with plasminogen and tissue plasminogen activator on the cell surface, which leads to the conversion of plasminogen to plasmin. Plasmin is a serine protease which plays a key role in the activation of metalloproteinases and degradation of extracellular matrix components essential for metastatic progression. We have recently found that both annexin A2 and plasmin are increased in conditioned media of co cultured ovarian cancer and peritoneal cells. Our studies suggest that annexin A2 is part of a tumor-host signal pathway between ovarian cancer and peritoneal cells which promotes ovarian cancer metastasis. Accumulating evidence suggest that interactions between annexin A2 and its binding proteins play an important role in the tumor microenvironment and act together to enhance cancer metastasis. This article reviews the current knowledge on the biological role of annexin A2 and its binding proteins in solid malignancies including ovarian cancer
    corecore